# Diffractive EM Jet A<sub>N</sub> at FMS with run 15 data updates and preliminary request

Xilin Liang

UC Riverside

Apr. 13, 2022

## Outline

- Reviews for analysis motivation, data sets, event selection and analysis procedure.
- Reproduce Chris's proton EM jet (pion) asymmetry.
- Current status and results for systematic uncertainty.
- Preliminary request for physics plot  $(A_N)$  target for DIS 2022

#### Contact information

- PA: Xilin Liang<sup>1</sup>, Latif Kabir<sup>1</sup>, Kenneth Barish<sup>1</sup>
- PA email address: <u>xilin.liang@email.ucr.edu</u>
- Supervisor: Kenneth Barish<sup>1</sup>
- Supervisor email address: kenneth.barish@ucr.edu

## Physics motivation

- Diffractive process may play a role to explain large  $A_N$ .
  - $A_N$  decreases with Increasing number of photons in EM jets.
  - Isolated  $\pi^0$  events have larger  $A_N$ .





## Data sets and triggers

- Data sets: run15 pp transverse data ,  $\sqrt{s} = 200 \ GeV$  (production\_pp200trans\_2015)
- Stream: st\_fms
- Production type: MuDst ; Production tag: P15ik
- Trigger for FMS : FMS small board sum, FMS large board sum and FMS-JP.
  - Trigger list: FMS-JP0, FMS-JP1, FMS-JP2, FMS-sm-bs1, FMS-sm-bs2, FMS-lgbs1, FMS-lg-bs2, FMS-lg-bs3. (8 triggers)
- Requirement: Event must also contain at least 1 Roman Pot track.
- Trigger veto: FMS-LED
- STAR library: SL20a

## Diffractive process (case 2 & 3 only)

Case 1:

Single diffractive event: we can detect only 1 proton track on east side RP. Require: only 1 east side RP track



#### Case 2:

Single diffractive event: we can detect only 1 proton track on west side RP.

Require: sum of west side tracks energy (proton

+ EM Jet) less than beam energy

#### Case 3:

Double diffractive event: we can detect 1 proton track on east side RP and 1 proton track on west side RP.

Require: sum of west side tracks energy (proton + EM Jet) less than beam energy



#### Procedure for data analysis



## Event selection

- FMS
  - 8 Triggers (avoid ring of fire), veto on FMS-LED
  - bit shift, bad / dead / hot channel masking (include fill by fill hot channel masking) , FMS tower energy > 2 GeV
  - Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 ,  $p_T > 1$  GeV/c, FMS point as input
  - Apply energy correction.
- Only acceptable spin pattern.
- Vertex (Determine vertex z priority according to TPC , VPD, BBC.)
  - Vertex  $|z| < 80 \ cm$

#### Roman Pot and Diffractive process

- Acceptable cases:
- 1. Only 1 west RP track + no east RP track
- 2. Only 1 east RP track + only 1 west RP track
- RP track must be good track:
- a) Each track hits > 6 planes
- b)  $-2 < \theta_X < 2 \text{ mrad}$ ,  $1.5 < |\theta_y| < 4.5 \text{ mrad}$
- Sum of west RP track energy and all EM Jet energy < 108 GeV

#### • BBC ADC sum cuts:

- West Large BBC ADC sum < 60
- West Small BBC ADC sum < 100

Transverse single spin asymmetry  $(A_N)$  calculation

• We use **cross ratio** method to calculate the diffractive EM Jet  $A_N$  at FMS.

• Raw 
$$A_N: \varepsilon = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}} \approx pol * A_N * \cos(\phi)$$

• Plot  $A_N$  as a function of  $X_F$ .  $(x_F = \frac{E_{EM jet}}{E_{Beam}})$ , 4 bins in range  $x_F \in [0.1, 0.3]$ 

• Divide full  $\phi$  range [- $\pi$  , + $\pi$ ] into 16 bins.



Cross check with Chris's analysis

All photon multiplicity EM jets

10

• Asymmetry related to  $A_N$ :  $\cos(\phi_p) \cos(\phi_{EM-jet} - \phi_p)$ 

• 
$$\sigma \propto \cos(\phi_p) \cos(\phi_{EM-jet} - \phi_p)$$

• Fit function:  $\frac{N^{\uparrow} - N^{\downarrow}}{P(N^{\uparrow} + N^{\downarrow})} = R + Acos(\phi_P)cos(\Delta \phi)$ , where  $\Delta \phi = \phi_{EM-jet} - \phi_P$ 







Proton – EM jet asymmetry Fit function:  $\frac{N^{\uparrow}-N^{\downarrow}}{P(N^{\uparrow}+N^{\downarrow})} = R + Acos(\phi_P)cos(\Delta\phi)$ 

- Only 2 photon multiplicity EM jets, where they are comparable to  $\pi^0$ .
- Both results for asymmetry are close.



### Apply energy correlation from simulation

- Detector level to particle level EM jet energy correlation from simulation.
  - Use 6<sup>th</sup> order polynomial to fit range [5,65] GeV, but apply [5, 10] GeV into correction.
  - Use linear fit for range [10, 65] GeV, but apply [10, 65] GeV into correction



## $A_N$ with / without energy correction

- When we apply the energy correction, we can see some differences in  $A_N$  with / without the energy correction.
- Compare with / without the energy correction.



## EM jet energy uncertainty

- $\sigma_E = C \oplus R \oplus E$ 
  - C: Calibration uncertainty (2.5%)<sup>[1]</sup>
  - R: Radiation damage and non-linear response uncertainty (0.5%)<sup>[1]</sup>
  - E: Energy resolution and correction uncertainty (separate by different x<sub>F</sub> bins)

| Energy correction    | Energy correction uncertainty    |
|----------------------|----------------------------------|
| x <sub>F</sub> range | A <sub>N</sub> result Difference |
| 0.1- 0.15            | 21.53%                           |
| 0.15 - 0.2           | 5.34%                            |
| 0.2- 0.25            | 42.84%                           |
| 0.25 - 0.3           | 149.10%                          |

[1] Z. Zhu , Measurement of Transverse Single Spin Asymmetry for pi0 at Forward Direction in 200 and 500 GeV Polarized Proton-Proton Collisions at RHIC-STAR

## Systematic uncertainty (Ring of fire)

- Ring of fire
  - Trigger: fms-sm-bs3
- Compare by with and without such trigger.



#### Polarization uncertainty

•  $\sigma(P_{set}) = P_{set} \cdot \frac{\sigma(scale)}{P} \oplus \sigma_{set}(fill \ to \ fill) \oplus P_{set} \cdot \frac{\sigma(profile)}{P}$ •  $\frac{\sigma(scale)}{P} = 3\%$  <sup>[1]</sup> •  $\frac{\sigma(profile)}{P} = \frac{2.2\%}{\sqrt{M}} = 0.3\%$  [1] Close to 0 •  $\sigma_{set}(fill \ to \ fill) = \sqrt{1 - \frac{M}{N} \frac{\sum_{fill} L_{fill} \sigma(P_{fill})}{\sum_{fill} L_{fill}}} = 1.77\%$ •  $\sigma(P_{fill}) = \sigma(P_0) \oplus \sigma(\frac{dP}{dt}) (\frac{\sum_{run} t_{run} \hat{L}_{run}}{L_{sun}} - t_0) \oplus \frac{\sigma(fill \ to \ fill)}{P} P_{fill}$ <sup>[2]</sup>

[1] W. B. Schmidke, <u>RHIC polarization for Runs 9-17</u>

[2] Z. Chang Example calculation of fill-to-fill polarization uncertainties

## Summary for systematic uncertainty

- From the table, we can see that the EM jet energy correction have relatively large uncertainty. This may possibly due to very low statistics for some x<sub>F</sub> range bins.
- The underlying events correction is not considered.
- Polarization uncertainty seems reasonable.

| Types of uncertainty<br>x <sub>F</sub> ranges | Ring of fire | FMS EM jets energy<br>uncertainty | Summary |
|-----------------------------------------------|--------------|-----------------------------------|---------|
| $x_F$ :[0.1, 0.15]                            | 7.63%        | 21.68%                            | 22.98%  |
| $x_F$ :[0.15, 0.2]                            | 6.90%        | 5.91%                             | 9.09%   |
| $x_F$ :[0.2, 0.25]                            | 14.65%       | 42.91%                            | 45.34%  |
| $x_F$ :[0.25, 0.3]                            | 17.94%       | 149.12%                           | 150.20% |

## Preliminary request plot

- Diffractive EM jet  $A_N$
- Statistics error and systematic error uncertainty are included for polarized and unpolarized beam  $A_{\rm N}.$
- Polarized beam  $A_N$  is relatively large, but with negative value. Unpolarized beam  $A_N$  is close to 0.



## Back up

## Abstract (for DIS 2022)

- There have been numerous attempts, both theoretical and experimental, to understand the origin of the unexpectedly large transverse single spin asymmetry (A<sub>N</sub>) for the inclusive hadron production at forward rapidities observed in  $p^{\uparrow}$  + p collisions at various center-of-mass energies. The twist-3 contributions in the collinear factorization framework and the transverse-momentum-dependent contributions from the initial-state quark and gluon Sivers functions and/or final-state Collins fragmentation functions are potential explanations to this puzzle. Previous analyses of A<sub>N</sub> for forward  $\pi^0$  and electromagnetic jets in  $p^{\uparrow}$  + p collisions at STAR indicated that there might be non-trivial contributions to the large A<sub>N</sub> from diffractive processes.
- The STAR Forward Meson Spectrometer (FMS) can detect photons, neutral pions, and eta mesons in the forward direction, with pseudo-rapidity coverages of 2.6 < eta < 4.2. In this talk, we will present the latest preliminary results and analysis updates on \$A\_{N}\$ for diffractive electromagnetic jets in the FMS using  $p^{\uparrow}$  + p data at  $\sqrt{s}$  =200 GeV collected at STAR.

### Blue/Yellow beam spin obtain

- We obtain blue and yellow spin from 4-spin bits: <u>https://drupal.star.bnl.gov/STAR/blog/oleg/spin-patterns-and-polarization-direction</u>
- Only accept the 4 cases below:

| 4-spin bits |      | Blue spin | Yellow spin |
|-------------|------|-----------|-------------|
| 5           | 0101 | U         | U           |
| 6           | 0110 | U         | D           |
| 9           | 1001 | D         | U           |
| 10          | 1010 | D         | D           |

## Calibration for FMS

- FMS calibration mostly based on Chong's calibration for run 15 FMS.
  - Hot/bad channel masking before reconstruction.
  - Exclude highly bit-shifted channel
- Additional hot/cold channel masking fill by fill. (see <u>FMS QA</u> in 3/31/21)

#### QA for EM Jet in FMS (case 2 & 3)

• EM jets are all the events with all cuts for case 2 and case 3.



Jet Pt [GeV/c]

#### Transverse single spin asymmetry $(A_N)$ calculation

• We use cross ratio method to calculate the diffractive EM Jet  $A_N$  at FMS.

• Raw 
$$A_N: \varepsilon = \frac{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} - \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}}{\sqrt{N^{\uparrow}(\phi)N^{\downarrow}(\phi+\pi)} + \sqrt{N^{\downarrow}(\phi)N^{\uparrow}(\phi+\pi)}} \approx pol * A_N * \cos(\phi)$$

• Plot 
$$A_N$$
 as a function of  $X_F$ . ( $x_F = \frac{E_{EM jet}}{E_{Beam}}$ ), 4 bins in range  $x_F \in [0.1, 0.3]$ 

• Divide full  $\phi$  range [- $\pi$  , + $\pi$ ] into 16 bins.



#### With energy correction



## Systematic uncertainty



- Roman Pot track uncertainty.
- Use 8M hard QCD event (Pythia 8 + Geant 4) simulation with RP simulation. Calculate the difference between the energy of **det**ector level track energy and **par**ticle level track for only 1 west side RP track case.
- Use Gaussian fit.
  - Sigma = 0.496%



### Fill 18795 with/without UE correction

- Use off-axis cone method for Underlying Event (UE) correction.
- UE EM jet  $P_t$  = EM jet  $P_t \Delta P_t$ , where  $\Delta P_t$  = Underlying Event Density \* Area



### Systematic uncertainty table and calculation

| Energy correction    |                        |                    | Without energy          |
|----------------------|------------------------|--------------------|-------------------------|
| x <sub>F</sub> range | With energy correction | า                  | correction              |
| 0.1- 0.15            | -0.01294               | 2                  | -0.0157277              |
| 0.15 - 0.2           | -0.0513                | 1                  | -0.0485722              |
| 0.2- 0.25            | -0.02529               | Э                  | -0.0361381              |
| 0.25 - 0.3           | -0.03777               | 1                  | -0.094093               |
|                      |                        |                    |                         |
| Ring of F            | ire Without Ring of f  | ire A <sub>N</sub> | With ring of fire $A_N$ |
| x <sub>F</sub> ran   | nge                    | result             | result                  |
| 0.1-0.               | .15 -0.02              | .2942              | -0.0119546              |
| 0.15 - (             | 0.2 -0.0               | )5131              | -0.054852               |
| 0.2- 0.              | .25 -0.02              | 5299               | -0.0215923              |
| 0.25 - (             | 0.3 -0.03              | 87774              | -0.0445506              |